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Flutter Analysis of Flat Rectangular Panels Based on 
Three-Dimensional Supersonic Potential Flow 
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NASA Langley Research Center 

A procedure has been developed for computing flutter 

- 
sties of single finite panels, 

particularly a t  low supersonic Mach numbers where static and quasistatic aerodynamic ap- 
proximations are not valid. Air forces from exact linearized potential-flow theory are used. 
The panel is considered as finely divided into many boxes, and the aerodynamic influence 
coefficients between all phirs of boxes are computed by numerical integration. The flutter 
analysis is a modal type of analysis which can be used with the box method for calculation of 
the flutter stability of any flat or nearly flat panel, whether of isotropic or anisotropic stiffness, 
and even for buckled panels for which the flutter is a small-amplitude, simple harmonic, 
superimposed motion to which linear theory would apply. Certain results are presented for 
flat unstressed isotropic panels. Variables whose effects were studied are panel length-to- 
width ratio, Mach number, and the air cavity behind the panel. Panels with simply sup- 

1' 31 

ported and with clamped edges were studied. /Vpyd& 

Nomenclature Mi = generalized mass for mode i 
Mi* 

Apj 
q 
pi( T),qj (  T )  

47i 
Qii 

= MJlwmA (applicable for uniform panel only) 

= perturbation pressure due to mode j [Eq. (17)] 
= dynamic pressure of airstream 
= time-varying generalized coordinate of motion for 

= complex amplitude of qj [Eq. (14)j 
= generalized aerodynamic force from the pressure 

due to mode j and the modal deflection of mode 

modes i and j [Eq. (14)] &..* = nondimensional computational quantity con- 

panel for modej [Eq. (14)] t = thickness of panel 

a. = speed of sound N = number of modes in a flutter analysis 
A ,  = aerodynamic influence coefficient giving the ve- 

locity potential at a box due to unit downwash 
on another box [Eqs. (3) and (911 

B. = number of boxes in stream direction 
B,. = number of boxes in cross-stream direction 
d = depth of cavity behind the panel 
B = structural damping coefficient of the panel 

modes i and j i 
I 

hijhj = distribution over the panel of mode shape for i [Eq. (1811 

H ~ ( x , Y , T )  

a = ( - l)l'* = unit of imaginaries 
Z G 1 , I ~ ~ , Z G )  = integrals in A, [Eqs. (10-12)] 
k, = UB/V = reduced frequency with reference length e 
kl = ol/V = reduced frequency with reference length 1 

= length of panel in stream direction 1 
mA = maas per unit of surface area of panel 
M = V / a ,  = Mach number W = width of panel in the cross-stream direction 

= distribution of time-varying vertical deflection of tained in Qij [Eq. (21)] 

U P  = transformed panel coordinates in x and y direc- 
tions, respectively, based on 4 2  aa a reference 
length [Eq. (5)] 

UI,U~,UI,UZ = lower and upper limits of integration with respect 
to u and to u [Eq. (S)] 

W i  = downwash velocity at the panel surface for modej 

X,Y = panel coordinates in stream and cross-stream 
directions, respectively (see Fig. l),  baaed on 
B as a reference length in Eqs. (3) and (5) 
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Fig. 1 Plan view of panel divided into boxes with coordi- 
nate system, dimensions, and a forward-facing Mach cone 

with apex at  box center xm,yn. 

a,? 

f f , f f*  = see Eqs. (26-28) 
B = ( f i f 2  - 1)1 /2  

6 = w/Bz. = width of box 
7 = dummy variable of integration for y 
p = ma/pl = panel-to-air mass density ratio 
E = dummy variable of integration for z 
P = density of airstream 
U = lBz8/wE8, length-to-width ratio of box 
7 = time 
cp = cp(m,n) = velocity potential at center of box m,n 
+(rn,n) 

w 

w i J w ~ , w S  

D 
ij = M2k, /g2  

Subscripts 
B = base or reference value 
i,j 
m,n = indices denoting streamwise and cross-stream 

T,S = indices denoting rclative locations of influencing 

te  = value at trailing edge of panel 
P,V = indices with same function a~ m,n 

= panel coordinates based on reference lengths 1 
and w, respectively 

= velocity potential a t  center of box m,n due to unit 

= frequency of flutter motion 
= natural frequencies of panel modes i and j and of 

= (wJw)* (1  + i g ) ,  flutter eigenvalue parameter 

downwash over box p,v 

a chosen base or reference mode, respectively 

= indices denoting mode numbers 

numbered location of a box 

and influenced box 

Introduction 

HERE has been considerable interest and activity in the 
T a n a l y s i s  of panel flutter. Perhaps the most recent re- 
views of the work done are those by Stocker’ and by Fung2 
which cover both theoretical and experimental investiga- 
tions. The present paper is concerned with an important 
type of panel and speed regime for which analysis has been 
lacking. That type of panel is the single rectangular one 
(embedded in a rigid surface), and the speed regime is the 
low supersonic, especially below Mach number 21/2. For these 
Mach numbers, simple approximations for the aerodynamic 
forces, such as from Ackeret theory or piston theory, are 
not satisfactory. Use of the exact theory for linearized 
supersonic flow is a logical step. This exact theory was 
applied by Luke and St. JohnJ to an effectively infinite- 
width panel separated into bays by supports equally spaced 
along the width. Zeijde14 obtained additional results for 

,. ’ 
such a panel with added supports that divide the length of 
the panel into equal bays. For this type of panel the general- 
ized aerodynamic forces needed in the flutter determinant 
can be obtained by evaluation of closed-form expressions. 
For finite-width panels, however, closed-form expressions 
have not been found for the aerodynamic force terms even 
for simple mode shapes of the panel. 

The subject of the present paper is the determination of 
the aerodynamic forces by, in effect, a numerical integration 
process and the subsequent use of the air forces to compute 
flutter boundaries. For this problem, current high-speed 
computing machines make practicable the obtaining of solu- 
tions by such “brute force” methods that would not be 
attempted otherwise. The panel is considered to be finely 
divided into a large number of equal-size boxes. The aero- 
dynamic influence coefficient of each box on each other box 
is calculated and used in a modal-type flutter stability 
analysis. The mode shape properties can be supplied from 
either calculation or experimental measurement. 

A number of flutter results are presented for flat unstressed 
panels with isotropic stiffness and by use of calculated mode 
shapes. Calculated modal frequencies mere used, with one 
exception. The principal variables studied are the panel 
length-to-width ratio and the flow Mach number. Effects 
of the air cavity behind the panels also are examined in a 
qualitative sense. 

Although the results presented are limited to simple panels, 
this modal analysis with a box method has a broad applica- 
tion and lends itself to the calculation of the flutter stability 
of any flat or nearly flat panel, whether unstressed or stressed 
(as by thermal expansion), whether of isotropic or anisotropic 
stiffness, and even for buckled panels for which the flutter , 
is a small-amplitude, simple harmonic, superimposed motion ’ 
to which linear theory would apply. 

Analysis 

The panel to be analyzed and the coordinate system are 
shown in Fig. 1. It is a single rectangular panel of length 
1 ,  width w. and the side edges are aligned with the remote 
wind direction. It is a flexible part of an otherwise inflexible 
surface which extends at least far cnough so that upper and 
lower surfaces of the panel induce no aerodynamic effects 
upon cach other. The supersonic stream passes over the 
upper surface. No account is taken of any perturbation 
pressures on the panel lower surface except for some re- 
marks regarding cavity effects near the end of the paper. 

The panel is divided into a number of equal-size rectangu- 
lar boxes. The number of boxes in the stream and cross- 

venience and for purposes of reference in the computational 
procedure, the boxes are numbered in sequence, beginning at 
the box nearest the origin of coordinates. In the stream 
direction the index m = 0, 1, 2, . . . B, - 1, and in the cross- 
stream direction n = 0, 1, 2, . . . B,. - 1. A second set of 
box index numbers is needed, and these are p = 0, 1, 2, . . . 
B, - 1 and v = 0, 1 ,2 ,  . . . B,, - 1. Thus, the aerodynamic 
influence upon any box m,n due to any other box p,v can be 
referred to. 

stream direction are B. and B,,, respectively. For con- I 

Aerodynamic Influence Coefficients 

It is assumed that the panel is divided into a sufficiently 
fine gridwork of boxes so that the downwash over any one 
box can be taken as uniformly distributed a t  any instant 
and that the resulting pressure perturbation a t  the center 
of each box is a sufficiently accurate average of the pressure 
distribution over that box. 

For convenience in the computational procedure, a refer- 
ence length is choscn as e, the width of a box; that is, e = 
w/B,.. The velocity potential a t  the center of box m,n due 
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to a uniformly distributed downwash w ( p , v )  over the box 
p,v can be expressed for a simple-harmonic time variation as 

both sides of the Mach cone). For this condition 

u' - 
(10) 

The second form of Eq. (9) occurs for portions of a box cut 
by one side of the Mach cone (v # n), so that the limit v2 = 

_+_ u, v1 = 2s - 1 2 1. Since v2 = u, then COS-~(V~/U) = 0 and 

dm,n )  = E W ( M , V ) . ~ , ( ~ , S )  ' (1) l o l  = ill e-(@n/z)u J,, 
where 

.. (2) 
. 

r = m - p  s = n - v  
.,: and, from Eq. (34) of Ref. 5, 

, 

in which the area of integration S,,," is the area of box p,v. 
i n  the denominator, the indicated real part of the radical 
term has a nonzero value for any part of SP," which lies ahead 
of the forward facing Mach cone with apex a t  zm, y,, (see 
Fig. 1). All boxes and parts of boxes lying behind the Mach 
cone have a zero contribution to Aq(r,s) .  The frequency 
Mach number parameter is 

= M2k,/P2 (4) 
where the reduced frequency k ,  = wt/V contains the chosen 
reference length e .  

As in Ref. 5,  a transformation of variable is made as 
follows : 

(5)  5 ,  - E = pu/2 y* - f = v/2 

Then 

where the upper and lower limits of the surface integrals, 
indicated by vl, vz, ul, and up, are determined for any given 
box by its edges except where the forward Mach cone emanat- 
ing from x,, y. passes through the box. 

The integral of Eq. (G) is the one to be evaluated nu- 
merically. I t  is to be noted that the integrand contains a 
singularity of order (-3) a t  u = v ,  that is, along the Mach 
lines from z,, y,,. In order to avoid the potential inaccuracies 
involved in integrating in the vicinity of this singularity, 
the numerator of the integrand is replaced as follows: 

C O S ( ~ Q / ~ M ) ( U ~  - 02)'/2 E 

[cos(pQ/2M)(u2 - v 2 ) ' / 2  - I ]  + 1 (7) 

The integration with respect to v can be partly carried out 
formally: 

cos(pQ/2M)(u2 - v ? ) ' / ?  - 
(u' - 2 1/2 2) dv = 

v )  
+ 1 

The integrand of the remaining integral with respect to v is 
zero a t  u = v ,  and the integral can be evaluated more ao- 
curately. Substitution of Eq. (8) into A,(r ,s)  gives the re- 
sult 

U,cos(/3Q/2M)(u2 - v2)"2 - I dv du (9) L (u2 - v2)l/2 ) 
There is a need for only t,hree forms of Eq. (9). The first is 
for the condition that v1 = -02 = -u (which can occur only 
for v = n, and then only for the portion of n box p,v cut b y  

The third form Io3 occurs for boxes that are completely ahead 
of the Mach cone and also for portions of boxes ahead of the 
point where the Mach cone passes out through the side of the 
box : 

du du (12) 

Table 1 shows all possible relative locations of a box and the 
Mach cone. The applicable integral, whether Io1, l a 2 ,  or 
To3 is shown, and the limits of integration ul, v2,  ul, and uz 
are listed. The limits shown are consistent with the refer- 
ence length e chosen for Eq. (1) and with the transformation of 
Eq. (5) .  The quantity u = ZBJwB. is the length-to-width 
ratio of a box. 

With the assumptions that have been made, the aero- 
dynamic influence coefficients have right-left symmetry 
about s = 0; that is, 

) utcos(PQ/2M)(u2 - v 2 ) ' / 2  - 1 L (u2  - u2)1/2 

A,(r,s) = 4 b . 7 - 4  (13) 
Thus, all of the A,(r,s) which are needed for any box are 
obtained for either one of the rear corner boxes. 

Once all A,(r,s) are computed, the total cpl(m,n) for any 
downwash mode j a t  the center of any single hox m,n is ob- 
tained by a matrix multiplication: 

in which any element A ,  is zero where m - p = r would be 
negative. 

Downwash 

The dovrnmash w, is employed as follows. Let the panel 
deflection in mode j be expressed for simple-harmonic time 
variation as 

H ~ ( x , Y , ~ )  = !11(7)h(z,~) = ~ i ( ~ ) e ' ~ ~ h ( ~ , ~ / )  (15) 

where Q, is the complex ampiitude of the generalized coordi- 
nate of motion, and h,(z.y) is the shape of the deflection mode. 
The downwash ratio is 
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2 " "1 u2 

where f is a convenient streamwise coordinate that is zero at  
the panel leading edge and 1.0 at  the trailing edge. Substi- 
tution of Eq. (16) into Eq. (14) gives the result 

flutter determinant is the integral over the panel surface of 
the product of the deflection mode shape hi times Api; that is, 

~ < i  = - C J J h i  ("" + i d(l*)d(Wg) (19) 1 b* v 
The coordinate fi ranges from zero at the left edge to 1.0 at 
the right edge. If the term hi(bcpl/bf) is integrated by parts, 
there is obtained 

in which hi is hj(z,,,yy). Thus, the cp,(m,n) are obtainable in 
a systematic manner for each modej used in a flutter analysis. 

with mA representing the panel mass per unit area. 

Generalized Aerodynamic Forces 

velocity potential by 
The perturbation pressure Apl is obtained from the 

The generalized aerodynamic force term &i, needed in the 

Table 1 Types of integrals and limits of integration for 
computing A ,  (r,s) for all possible relative locations of the 

box p ,  Y and the Mach cone from box m,n 

L i n i t S  Of integration 

"1 "2 Ul u2 

U 

J cpi ($ - i $ hi)d(lz) ] ~ ( w z )  (20) 

Since hi(zt,,y) is zero for panels supported at the trailing edge, 

In Eq. (21) the quantity [(dh;/b$) - i(wl/V)hi] readily is 
seen to be the complex conjugate of the amplitude of the 
downwash ratio for mode i [where the subscript i is not to 
be confused with the unit of imaginaries i = (- l)l'z]. 

In  practice the integral of Eq. (21) is evaluated by a sum- 
mation or matrix multiplication that can be put in the con- 
venient form 

where 

1 1 (2r+l) O/B Solution of the Flutter Determinant 

U 

21-1 2S+l  2S+l {2r+l). /P E::: 25-1 u 25-1 2S+l  

where 

a! = p - ( - )  1 w z  
Ba Bza 

and kl = wl/V is the reduced frequency based on the reference 
length 1. For panels with a uniform mass distribution mA, 
the quantity a/Mi in Eq. (26) can be replaced as follows: 

a/Mi = (a*/Mi*)(l/~) (27) 
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where 

a* = W/ZB,B,.~ 

and 1/p = pl/m, is the air-to-panel mass ratio. Thus, one 
now has all the necessary quantities for. computing flutter 
boundaries. Panel dimensions and natural frequencies are 
employed only as ratios. The downwash ratios and other 
parameters involving the mode shapes are in forms that are 
independent of the panel size. 

As is commonly the case with exact air forces, the flutter 
boundary cannot be computed directly, and an indirect 
method of computing and cross-plotting is necessary. In 
advance of a flutter solution for any given panel and Mach 
number, choices are made for B., Bz,, and the number of 
modes in the analysis. The downwash quantities ah/& 
and hi are computed or obtained from experiment at the 
center of each box for each mode i (or j )  and arranged sys- 
tematically for use in the matrix multiplications. The quanti- 
ties Mi and a (or Mi*, 1/p, and a* for panels with uniform 
mA) are computed, except that allowance for varying the air 
density in a (or 1/p) is retained. 

Following judicious choice of the reduced frequency kl, 
the block of values of A&,s), then the (pj(m,n) at each box 
center for each mode, and then the generalized aerodynamic 
forces Qij are computed and employed in the flutter deter- 
minant. For each of a number of values of the air density, 
the complex eigenvalues Q are computed. There is one . eigenvalue corresponding to each chosen panel mode. By 
plotting curves of g against l / p  for a sufficient range of air 
densities, the existence or nonexistence of an eigenvalue with 
g = 0 for some air density is established for each mode. An 
associated curve of the stiffness parameter w1 1/V or w1 &‘a, 
is plotted against mass ratio-one curve for each eigenvalue. 
(The use of the speed of sound a. rather than V permits direct 
comparison of flutter boundaries for various Mach numbers.) 

On a plot of l/p against stiffness parameter, points now 
can be placed which represent g = 0 or some other small value 
of g believed representative of the actual hysteresis structural 
damping of the panel. Each point is on a separate stability 
boundary. 

By successive judicious choices of kr ,  a series of points can 
be placed on the plot of l /p  against stiffness parameter and 
stability boundaries drawn through the points. Four differ- 
ent types of stability boundaries have been found, in general, 
and three of them are illustrated in Fig. 2. For each type, 
a boundary for g = 0 and one for g = 0.01 (as illustrative of 
some small value) are shown, and the arrows point in the 
direction of increasing reduced frequency kl. The type of 
boundary of Fig. 2a predicts that, if g were zero, a fixed panel 
thickness would be needed as the air density tends toward 
zero, but if g is not zero, panel thickness goes toward zero as 
air density does. 

For the type of boundary of Fig. 2b, the unstable region 
shrinks with increasing g and vanishes for some value that 
may be extremely small or as large as g = 0.05 or possibly 
larger, depending upon the panel and flow parameters. The 
crossing point of the boundary for g = 0 in both Figs. 2a 
and 2b through l /p = 0 occurs a t  a value of k l  for which the 
imaginary part of Qii(kl) passes through zero. For the type 
of boundary of Fig. 2c, small increases of g have little or no 
effect, and this small effect can be either stabilizing or de- 
stabilizing, depending on the particular panel and flow param- 
eters. An important point regarding the boundary of Fig. 
2c, as well as the dashed boundary of Fig. 2a, concerns their 
resemblance to a parabola. For any boundary or portion of 
a boundary which is a parabola accurately described by 
1/p = (wl Z/a.)2 times a constant, the air density and the 
panel thickness ratio t / l  to prevent flutter are related by the 
formula t /Z (p )”3  = const. Such a relationship is contained 

I Stoble 

I - 
P 

C 

- 0  
0 01 _ -  

p’ Unstable 

CI 

Fig. 2 
0 and for g = 0.01. 

Three general types of stability boundaries for g = 
Arrows indicate direction of increasing 

reduced frequency k I .  

in the panel flutter parameter ( E P / ~ ) l / ~ ( t / l ) ,  which has been 
evolved and used by several investigators. The fourth 
possible type of boundary found from a flutter determinant 
is one that falls entirely in the negative 1/p region, with 
the positive l /p region being stable with respect to it. 

For any given panel and flow parameters, a set of stability 
boundaries is computed according to the number of modes 
used in the analysis. The flutter boundary separates the 
region that is stable with respect to all stability boundaries 
from the region that is unstable with respect to at least one 
stability boundary. It is the duty of the investigator to 
establish that the flutter boundary is converged, that is, that 
enough modes have been used in the analysis so that addi- 
tional modes do not alter the flutter boundary in any im- 
portant respect. 

Results and Discussion 

Effect of Panel Length-to-Width Ratio on Flutter 

Results have been calculated for several panel length-to- 
width ratios in the range from l/w = 0 (the two-dimensional 
panel) to 10, for M = 1.3, and with g = 0. The panel edges 
were either clamped or simply supported (pinned). The 
results for an aluminum panel a t  sea level are shown on Fig. 
3. The abscissa is the length-to-width ratio, and the ordinate 
is a panel flutter parameter ( / 3 E / ~ ) * ’ ~ ( t / l ) .  Analytical re- 
sults calculated for M = 1.3 and with g= 0 are stown for 
panels with clamped edges by the square points connected 
by the long-dash line snd for panels with simply supported 
(pinned) edges by the round points connected by the short- 
dash line. Also shown for comparison on Fig. 3 is the ex- 
perimental flutter envelope from NASA T N  D-451e which was 
obtained from tests on many panels with different sizes and 
materials, for Mach numbers from 1.6 to 6, a t  different tem- 
peratures, and with various compressive loadings and amounts 
of buckling. The analytical results fall below the experi- 
mental envelope as would be expected, since the analysis 
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ASYMPTOTE M = 1.3, g = 0 

, X LMODES 
A 4MODES 

INFINITE SPAN ARRAY, EDGES PINNED Q, 

PANEL LENGTHlWl DTH 

Fig. 3 Analytical variation of panel flutter parameter with 
l /w for aluminum panels at sea level compared with the ex- 
perimental envelope of Ref. 6. Present results for a single 
panel and previous results for an infinite span array of 

panels are shown for M = 1.3 and g = 0. 

is of flat unstressed panels, and the experimental envelope is 
established largely by marginally buckled panels. Also 
shown as a matter of interest are a few results from Refs. 3 
and 4 for an infinite span array of panel bays. 

A point of interest concerns the flutter frequency and 
flutter mode. For all the length-width ratios at least up 
through 4 on Fig. 3, the flutter frequency was near and usu- 
ally slightly above the firsbnatural-mode frequency. But 
even where the flutter frequency was almost exactly equal 
to the first natural frequency, the flutter mode was a coupling 
of more than one natural mode. The degree of coupling was 
small for the low values of l /w but increased with increasing 
1/w. For I/w = 10, there was a great change in the flutter 
mode. Twelve modes were required in order to obtain a 
converged flutter boundary. The flutter frequency was 
between the eighth and ninth natural frequencies. The 
largest component present in the flutter mode was the ninth 
natural mode, and the proportions of modes near to the ninth 
were also large. 

Effect of Mach Number 

The thickness ratio t / l  and the panel flutter parameter 
have been computed for an aluminum panel a t  sea level 
with I/w = 2, edges clamped, and for several Mach num- 
bers from 1.1 to 2.0. The results are given in Table 2. The 
thickness ratio to prevent flutter is virtually constant for 
M of 1.2 to 1.5, is 5y0 higher a t  M = 2.0, and is 6% lower a t  
Af = 1.1. This trend for low supersonic Mach numbers is in 
sharp contrast to the result for two-dimensional panels for 
which a great increase in thickness ratio is predicted to he 
required for Mach numbers less than about 2’/2. The ratios 
of flutter frequency to first natural frequency fell between 
1.0 and 1.1 for this panel and Mach number range. 

Reference 7 (Lock and Fung) reports the results of panel 
flutter experiments a t  low supersonic Mach numbers from 
1.16 to 1.45. The panels tested were square or nearly so 
(Z/w = 0.95, 1.00, and 1.06), were clamped a t  their leading 
edges, approximately simply supported at their trailing edges, 
and free on their side edges to allow the flutter motion to  

Table 2 Clamped-edge aluminum panels at sea level 

M t / I  (RE / a  )l I 3 i t  / 1 )  

1.1 0.00292 0.212 
1.2 0.0031 1 0.241 
1.3 0.00312 0.251 
1.4 0.0031 1 0.248 
1.5 0.00311 0.247 
2.0 0.00327 0.248 

be “two-dimensional.” In Fig. 21 of Ref. 7, the experi- 
mental thickness ratio to prevent flutter is shown as a func- 
tion of Mach number for a condition of no pressure differ- 
ence through the panel. The increase of thickness as iM 
decreases below 21/2 was found to be much smaller than 
predicted by analysis of a two-dimensional panel. Even 
though the panel motion showed no cross-stream variation, 
it sermq evident that, the aerodynamic forces exerted on the 
panel are not truly two-dimensional, especially near the panel 
side edges. The reason is that from the panel side edge to 
the tunnel side wall there is an area of nonmoving tunnel 
surface of width equal to about 6.2% of the panel width. If 
the tunnel side wall acted as a reflector, the image of the 
panel beyond the side wall would be a t  a distance of 12.4% of 
panel wXth frcm thc panel. 

Since the images could not be accounted for with the 
present analysis, a single square panel was analyzed as a 
matter of interest. Six modes were used for the panel 
clamped a t  leading edge, simply supported at trailing edge, 
and free a t  side edges. The measured frequencies for the 
first two modes (the only ones available) and calculated fre- 
quencies for modes 3 to 6 were used. Flutter calculations 
were made a t  three RiIach numbers: 1.16, 1.20, and 1.30. 
The results are shown on Fig. 4 for comparison with the ex- 
perimental results from Ref. 7 .  The upper curve is for g = 0, 
the next lower one for g = 0.01, and below that one for g = 
0.015. Thus, in terms of thickness ratio the analytical re- 
sults with a small value of g agree rather well with the ex- 
periments. However, there is a significant difference in the 
flutter frequency. The experimental frequency was below 
the first natural frequency and within about 15y0 of it. 
The analytical frequency for a single panel was slightly below 
the second natural frequency for Ai = 1.16 and 1.20 and was 
slightly below the third natural frequency for M = 1.30. 
Obviously, some factor or factors are not accounted for in 
the analysis to match the experiments, whether it is the 
boundary layer over the panel (as suggested in Ref. 7), the 
reflected images of the panel through the boundary layer on 
the tunnel side walls (see sketch in Fig. 4), the air in the 
cavity behind the panel, or the air puffing in and out of the 
cracks along the panel side edges. 

Eflect of Air Cavity behind the Panel 
Panels on aircraft and missiles generally have some kind of 

a space behind them which can have an effect on the flutter 
stability of the panel. Such an effect was reported in NASA 
TN D-8278 on the flutter of a Fiberglas sandwich panel with 
a plastic-foam core. The panel had a length of 33.38 in. 
and a width of 20.31 in. Most of the tests were made with 
cavity depth of 1.5 in. behind the panel, and flutter was ob- 
tained over a h/Iach number range from 1.76 to 2.87. When 
the cavity was filled with layers of plywood so that the back 
surface of the panel touched the plywood, no flutter was ob- 
tained even though the airstream dynamic pressure was 
doubled. But when the cavity depth was made 0.5 in., 
flutter occurred a t  a dynamic pressure 40% lower than with 
the 1.5-in. cavity depth. 

Since the flutter frequency was much lower than the lowest 
acoustic-resonance frequency of the cavity, a simplified study 
was made on the basis that the only action of the air in the 
cavity is as an air spring that resists panel deflection in any 
mode that would compress the air but does not affect modes 
not involving compression. In the analysis the odd-num- 
bered modes (1, 3, 5, etc.) inXroIve compression, and the even- 
numbered modes (2, 4, etc.) do not. The air-spring effect 
is largest on mode 1, much less on mode 3, and essentially 
negligible on higher modes. The analytically determined 
effect for a progressively decreased cavity depth primarily is 
to force the first-mode frequency upward toward the un- 
affected second-mode frequency. For sufficiently small 
cavity depth, the first-mode frequency could coincide with 
or even go above the second-mode frequency. One finding 
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of the analysiq was that determination of the natural fre- 
quencies of the panel in place over the cavity should be meas- 
ured with the air density equal to (or over a range of density 
icc!-.’k?g) that i ~ ?  the Civity rliiring the flutter experiment. 
This is true because the test density is often a small fraction 
of the density of the outside atmosphere (where the still-air 
panel modes and frequencies usually are measured), and be- 
cause the incremental effect of the cavity air spring is propor- 
tional to the cavity air density. 

Since experimental frequencies were not available from 
Ref. 8 for the air densities of the flutter tests, flutter results 
have not been computed as a function of cavity depth as a 
variable. Instead, the panel flutter parameter has been 
obtained as a function of an assumed variable first-mode 
frequency. The result is shown qualitatively in Fig. 5 as 
the panel flutter parameter vs the first-mode frequency. 
As the first-mode frequency increases, the flutter pnrametcr 
increases at an accelerating rate, reache? a maximum value 
in the vicinity of w, = wp, and then decreases sharply with 
further increase of wl. It seems clear that the same trend 
would be obtained for decreasing cavity depth. 

Finally, there are undoubtedly other effects of the cavity 
which would become important for sufficiently small cavity 
depths. These are the virtual inertia and the frictional re- 
sistance of the air being pushed back and forth in the cavity 
by panel modes higher than the first. There could also be 
acoustic resonance effects a t  sufficiently high frequencies. 
The effect of the virtual inertia of the cavity air would be to 
lower natural-mode frequencies. In Ref. 8 i t  is reported 
that decreasing the cavity depth from 1.5 to 0.5 in. lowered 
the frequencies of modes 2, 3, and 4 by appreciable amounts, 
but the first-mode frequency could not be found. These fre- 
quency measurements were made at essentially sea-level air 
density for which the cavity effects are proportionately larger 
than for the much lower air density of the flutter test. 

’ 

’ 

Concluding Remarks 

A panel flutter analysis has been developed for which the 
generalized aerodynamic forces are computed by the “brute 
force’’ technique of dividing the panel into a larger number of 
boxes and computing and employing the aerodynamic in- 
fluence of each box on each other box. Such a technique 
can be resorted to where the aerodynamic forces are not 
obtainable from simple or elegant closed-form mathematical 
expressions. An important area of application of this 
technique is to finite panels a t  lorn supersoriic Mach nuni- 
bers. Either experimental or analytical mode shapes and 
frequencies can be used. Thus, this type of analysis can be 
applied to any flat or nearly flat panel, whether unstressed 
or stressed (as by thermal expansion), whether of isotropic 
or anisotropic stiffness, and even to a small-amplitudr flutter 
superimposed on a buckled deflection. 

Results are presented only for flat unstrrsscbd isotropic 
rectangular panels with side edges parallel to the air-stream 
direction and for a condition of no pressure difference that 

‘IRST-MODE FREQUENCY INCREASING --t 
OR CAVITY DEPTH DECREASING- 

Fig. 5 Qualitative effcct on t/Z and panel flutter param- 
eter of an increase of the panel first-mode frequency, 
such as could be caused by a decrease of the cavity depth 

behind the panel. 

would tend to bulge the panel. A panel flutter parameter, 
involving panel stiffness and stream dynamic pressure, is 
plotted as a function of panel length-to-width ratio for both 
clamped-edge and simply supported panels and is compared 
with the experimental flutter envelope from Ref. 6. In 
terms of panel thickness to prevent flutter, the analytical 
results fall moderately below the experimental envelope, 
which result is to be expected because the envelope was es- 
tablished largely by the more severe condition of marginal 
thermal buckling. 

The effect of variable Mach number was studied for a 
clamped-edge aluminum panel a t  sea level with a length-to- 
width ratio of 2. The thickness ratio was essentially con- 
stant for 116 = 1.2, 1.3, 1.4, and 1.5, was 5’% higher a t  M = 
2.0, and was 6% lower at M = 1.1. Another variable Mach 
number study was made to compare with a series of experi- 
ments in a wind tunnel on square and nearly square panels 
at Mach numbers from 1.16 to 1.45. Analytical results 
agreed well with the experimental for the thickness ratio 
but not for the flutter frequency. 

The effect of a cavity behind the panel was analyzed quali- 
tatively on the basis of the cavity acting solely as an air 
spring to resist panel modes that would compress the air, 
thereby raising those modal frequencies. If the ratio of 
cavity air density to cavity depth is high enough, the first- 
mode frequency can be raised to equal or even exceed the 
second-mode frequency. An equality of first- and second- 
mode frequencies is generally a very unfavorable factor and 
tends strongly to produce flutter. 
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